Choosing the Right Treatment to Meet Your Needs

Western States Regional In-Place Recycling Conference

Better, Faster, Cost Effective

Presented by: Tim Aschenbrener September 13, 2012

providing engineering solutions to improve pavement performance

In-Place Recycling Selection Considerations

- Pavement condition (distress type, extent and severity)
- Engineering factors
- Economic considerations

Pavement Condition

Types of Distress

- Surface defects
- Deformation
- Cracking
 - Load-related
 - Non load-related
 - Reflective
- Patching

Impact of Pavement Distress on Recycling Methods

Technique	Distress Characteristics	Typical Milling Depths
HIR	Minimal deterioration, distress contained in surface, no load distress	2 in.
CIR	More high-severity, non load distress extending deeper into surface	4 in.
FDR	Any	6 to 14 in.

Engineering Factors

- Expected treatment design life
- Suitability of materials for recycling
- Expected traffic growth
- Traffic control
- Construction logistics
- Presence of underground utilities
- Need for geometric corrections or safety enhancements
- Environmental factors
- Drainage improvements

Economic Considerations

- Financial comparisons
- User delay
- Traffic control
- Length of construction period
- Local business impact
- Utilities

5 Case Studies

- Considerations (pavement condition, engineering factors and economic considerations)
- Project Decisions
 - Type of Recycling
 - Depth of Recycling
 - Use of Additives
 - Other Information as Available

Colorado DOT, Region 1 SH-86 near Kiowa

Case Study #1 Before

Colorado DOT, Region 1 SH-86 near Kiowa

Case Study #1 During

Colorado DOT, Region 1 SH-86 near Kiowa

Case Study #1 Note

• Cores are important

– What does the distress look like below the surface?

• CIR passed Hamburg wheel-tracking test

Colorado DOT, Region 2 I-25 south of Pueblo

Case Study #2 Before

Colorado DOT, Region 2 I-25 south of Pueblo

Case Study #2 During

Colorado DOT, Region 2 I-25 south of Pueblo

Case Study #2 Note

- Life Cycle Cost Analysis
 - 6-inch CIR and 4-inch overlay (\$24.7M)
 - 4-inch mill and 5.5-inch overlay (\$28.9M)
- "Go Green" Calculations
 - Save 17,000 tons of aggregate
 - Save 1,200 tons of binder
 - Recycle 85,000 tons of material

Colorado DOT, Region 3Case Study #3SH-141 through Unaweep CanyonBefore

Colorado DOT, Region 3 Case Study #3 SH-141 through Unaweep Canyon During

Colorado DOT, Region 3 Case Study #3 SH-141 through Unaweep Canyon Note

- Pavement smoothness award
- When HIR is selected, CDOT has project selection guidelines for the 3 types of HIR:
 - Surface recycling
 - Heater remixing
 - Heater repaving

Colorado DOT, Region 4 US-385 at Idalia

Case Study #4 Before

Colorado DOT, Region 4 US-385 at Idalia

Case Study #4 During

Colorado DOT, Region 4 US-385 at Idalia

Case Study #4 Note

- "Exposed" FDR
 - Maximum length of 4 miles
 - Maximum time of 3 days
- Trimmer required for grade control prior to paving

Colorado DOT, Region 5Case Study #5US-160 near the four cornersBefore

Colorado DOT, Region 5 Case Study #5 US-160 near the four corners During

Colorado DOT, Region 5 US-160 near the four corners

Case Study #5 Note

- 3D Modeling
 - Balance delivery of aggregates
 - Blade in front of reclaimer had AMG
 - Blade behind reclaimer had AMG
- Pavement Award

Case Study #6 AADT = 35,000, 5% Trucks

Summary

- Pavement Condition
 - Surface distresses
 - Cores (distress below surface & pavement depth)
- Engineering Factors
 - Design life, constructability, geometrics, drainage, others
- Economic Considerations
 - LCCA, user delay, local businesses,

"go green"

Choosing the Right Treatment to Meet Your Needs

Western States Regional In-Place Recycling Conference

Better, Faster, Cost Effective

Questions ?

providing engineering solutions to improve pavement performance